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Persistent Random Walks in a One- 
Dimensional Random Environment 
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Central limit theorems are obtained for persistent random walks in a one- 
dimensional random environment. They also imply the central limit theorem for 
the motion of a test particle in an infinite equilibrium system of point particles 
where the free motion of particles is combined with a random collision 
mechanism and the velocities can take on three possible values. 

KEY WORDS: Diffusion limit; persistent random walks; random 
environments. 

1. INTRODUCTION 

Recently it has become an intriguing problem to understand when random 
walks (r.w.) in a random environment (r.e.) converge to the Wiener process 
in the diffusion limit. Sinai's astonishing one-dimensional model (11) shows 
that, even in the presence of spatial symmetry in the definition of the 
environment, the behavior of a random walk in a random environment can 
be radically different from that of a classical random walk (in this model the 
displacement of the moving particle after n steps is of order log2n rather 
than n 1/2). It is, in general, expected that some form of symmetry of the tran- 
sition operator, weaker than its self-adjointness will involve the central limit 
theorem (cf. Refs. 1, 7, 5 as partial confirmations) in arbitrary spatial 
dimension. 

Our aim here is to investigate the asymptotic behavior of one- 
dimensional persistent random walks in a random environment. 
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Suppose that at each site of the lattice Z a random scatterer is placed 
and it is characterized by left- and right-transpassing probabilities 2j. and/~j 
( j  C 7/). These probabilities are chosen at random. For simplicity, we assume 
they are independent, identically distributed (i.i.d,) random variables. The 
collection of these random probabilities is the "environment." 

Given the environment, a persistent random walk is a Markov chain X, 
of order 2 with transition probabilities 

P(Xn+ 1 = j +  I IX._ 1 = j - -  1,X, = j )  = 2j 

P(Xn + 1 

P(Xn+l 

P ( X ,  + 1 

We show that if 

= j -  l l X n _ l = j  - 1 , X ,  = j ) =  1 -A. j  

= J -  l lY,_~ = j - b  1, X , = j ) = / a  s 

= j +  l lXn_ l = j +  1 , X , = j ) = I - / I j  

(S) 2j=l.t j  with probability 1 ( j E  Z) 

or 

r 
(PD) ~ ~< c < 1 with probability 1 ( j  C Z) 

then the diffusion limit of the random walk in a random environment is a 
Wiener process. Though the transition operator of our random walk is not 
self-adjoint, the symmetry condition (S) turns out to be sufficient to obtain 
the result, while in the simpler case (PD) with positive drift we have an 
exponential mixing. 

In Section 2 we give a more general formulation of the problem adding 
waiting times to the model and weakening the independence assumption on 
the environment, and we also state our theorems. Their proof is given in 
Section 4. 

The motivation and the applicability of our results is discussed in 
Section 3. In fact, a one-dimensional infinite system of point particles moving 
uniformly with a random collision mechanism was investigated in 
equilibrium by Kipnis et al. (6) when the velocities had two possible values. 
By reducing the problem to a random central limit theorem they could show 
that the trajectory of a test particle is Wiener in the diffusion limit. In the 
same model, when the velocities have three possible values, we are able to 
represent the motion of the test particle as a random walk in a random 
environment, and thus it is shown to be asymptotically Wiener as a conse- 
quence of the results of Section 2. We expect our approach will work in a 
wider context, too. 
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2. EXACT FORMULATION AND MAIN RESULTS 

Let ( /2,J- ,  v, T) be an ergodic dynamical system with an invertible 
measure preserving T. Suppose B and 2 are measurable functions on /2 
taking values from the interval [0, 1], and p(ds]• .) are two transition 
probabilities from /2 to [~+. The interpretation of these objects is the 
following, co C .O is identified with a realization of the environment; T~co is 
the kth translate of the same realization (k C Z). 2(co) and/l(~o) are the left- 
and right-transpassing probabilities of the scatterer placed at the origin in the 
realization a~. p(ds I + 1, o~) are the left and right waiting time distributions of 
the same scatterer. 

We say that the environment is finitely dependent (F.D.) if (/2, J - )  is a 
product space (i.e.,/2 =/2o ~, where/20 represents the random characteristics 
of the environment at one site), T is the left shift on it, v is a measure with 
finite range of dependence (i.e., d dependent for some d/> 1 in the language 
of probability theory), and the functions defined above depend only on the 
zeroth coordinate. 

We shall consider two significant cases of the model: the symmetric 
one: 

(S) ~(oJ) = U(a~) v-a.s. (2.1) 

and the case with positive drift (this naming will shortly become justified): 

(P.D.) /~ ~< e < 1 v-a.s. (2.2) 

The process is defined in the following manner. (vn, en, r,) is a Markov 
chain on {+1, -1  } •  • ~+ ,  v, being the nth jump of the random walker, 
e, the environment seen by the walker after this jump, and r~ the nth waiting 
time. 

The transition operator of this Markov chain is the following: 

[pf ] (+ l ,  ~o, t) = x(co)Sp(dsl+l, r~o) f ( + l ,  r~o, s) 

+ [1 - 2(co)] fp(ds[-1, T '~o) f(--1, T-~co, s) 

[Pf](-1, co, T) = [1 --/~(co)] fp(dst+l , T~o) f ( + l ,  T~o, s) 

+t2(oJ)fp(dsl-1, T-leo)f(--1,  T-l~o, s) (2.3) 
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(v., e.) is also a Markov chain with transition operator 

[Pof](+l ,  co) = it(co) f ( + l ,  Tco) + [1 - it(w)] f(--1, T-lco) 

[Pof](--1, co) = [1 --p(co)] f ( + l ,  Tco) + it(co)f(--1, T-lco) 
(2.4) 

We shall denote by m(t) the number of jumps effected until t: 

m ( t ) = m i n  In ~ r k > t  I (2.5) 
k=0 

and by y(t) the position of the random walker at t: 

m(t) 
y( t )= X ~ v k (2.6) 

k=l 

We shall prove invariance principle for this random function. 

Theorem 1. In the symmetric case if 

it ~ a < 1 v-a.s. (2.7) 

and 

f v(daOit-l(co) < oo (2,8) 

then for almost all realizations of the environment 

Y(At) 
Ca(t)= v /~  => w,, (2.9) 

where W~ is a Wiener process with zero mean and 

0"2= I v Y 1  l f p(d~176 f:sp(ds/z) '~176176 -1 

def 1 
-- (r) 6~ (2. I0) 

The convergence =~ of stochastic processes means the weak convergence in 
D[0, or) supplied by the Skorohod topology (cf. Ref. 8). 
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T h e o r e m  2. In the case with positive drift, if the environment is 
finitely dependent and if the waiting times have finite second moments 
uniformly in co), then with suitably chosen u and a 

Y(At) - uAt 
CA(t) = v ~  ~ wo 

m probability with respect to the environment. 

Remark. Some relatively simple calculations give 

(2.11) 

where 

u =  (r---~ (2.12) 

(v) = f v(dco)[~z(+ 1, co) - zr(-1, r (2.13) 

v fv(dco)~(~,~o)fsp(dsl~,o~) (2.14) 

is the density of the stationary distribution of the Markov chain (v~, e~) 

I + y(co) ~(-1, co) = y(Tco) 
z~(+l, co) = 1 + 2 f v(dco) 7(co)' 1 + 2 f fl(dco) y(co) 

with 

(2.15) 

/2 l ~ ( T c o  ) p ( T c o ) [ ~ ( T 2 c o  ) g(T2co).." y(co) = ~ (co) + ~ (co) + ~ + 

(2.i6) 

The calculation of a seems more complicated. 

3. APPLICATIONS 

In this section we shall give some more physical models which the 
theorems presented above can be applied to. In each example we couple a 
random walk to the one-dimensional motion of a test particle. 

3.1. The Random Collision Model 

This model is a modification of Harris' one-dimensional hard point 
gas. (4'13) An infinite system of identical point particles is distributed on the 
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line according to Poisson distribution with density 1. The velocities of the 
particles are i.i.d, random variables with mean zero. The particles move 
freely except collisions: when two particles meet each other they collide 
elastically with probability 1 - ~  (i.e., with probability 7r they pass through 
each other conserving their initial velocities; with probability 1 -  rc they 
exchange their velocities.) We are interested in describing the trajectory of a 
tagged particle in the system. The sure collision model (Tr=0) was 
exhaustively treated by Spitzer <13) in equilibrium and by Major and Sz/tsz ~1~ 
in the nonequilibrium case. Major and Sz/~sz found that in the general none- 
quilibrium case the trajectory of a tagged particle normed in the standard 
way tends in distribution to a Gaussian process which is, in general, not 
Wiener. 

We can apply our theorems to the case where the particles are in 
equilibrium distribution (Poisson) and the velocity distribution is concen- 
trated on three points: 

a = - , 0 ,  +, ~ (v~)  = p~, ~ p , =  1, ~ v ~ p , = - O  (3.t) 

Denoting the trajectory of a tagged particle by y(t) we can prove that with a 
suitably chosen constant 

y(At) -- y(O) 
aV/~  ~ W(t) (3.2) 

where W(t) is a standard Wiener process. If v o = 0 (symmetric case) we can 
also calculate 

.crz = 1 + 7r E Ivl (3.3) 

We give the details of the reduction to the coupled random walk only for the 
symmetric case, the other one being essentially the same. 

The positions of the zero-velocity particles are fixed once and for ever: 
{Si}i~ z in a natural order. The random variables ~i ~-Si+l- Si are i.i.d. 
exponentially distributed with parameter Po. We shall consider the random 
walk on Z coupled with the motion of the tagged particle in the following 
way: the walking particle jumps to the lattice site i when the tagged particle 
enters the open interval (S i, S;+I) and stays there until the tagged particle 
leaves the closed interval [Si, St+x]. 

The "environment space" will be 

if2 = ~2~ Z = { ( +  .... l _  1,10 , l l , . . . ) l l i ~ 7 ~ + }  ( 3 . 4 )  
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with the product  a-algebra and 

oo 

v =  (~) m i (3.5) 
i =  - -o 0  

with each m; exponentially distributed with parameter  Po. T is the left shift 
on ~ .  The coupled random walk is trivially a persistent r.w. in r.e. with 
waiting times. 

One can calculate 

1 - - 2  1 --z~ 
2 ( .... l ~  2 [1 + (1 + zO(1 -- Po)lo] (3.6) 

2 
( r )  = (3.7) 

(1 --~)PoEtv I 

The result is modified by the fact that the interval lengths are random:  

Y(At) Y(At) X(At) + e 
= (3.8) 

k~ ~ X(At) + e k~ ~ 

In (3.8) X(t) is the lattice position of the random walker (we have to add e 
to avoid zero in the denominator) .  Due to the fact that IX(At)I tends to 
infinity in probabili ty,  the first factor tends in probabil i ty to (~), the average 
of the interval length. Consequently,  by Theorem 1 we have the desired 
result. 

3.2. The Stochastic Lorentz Gas 

An almost  trivial application of  Theorem 1 is the one-dimensional 
stochastic Lorentz gas: random scatterers are placed on the line according to 
some translation invariant,  ergodic distribution. Each scatterer has a 
tri~nspassing probabil i ty 2. A particle with unit velocity is moving on the 
line. When it arrives to a scatterer it decides to continue its way or to turn 
back according to the respective transpassing probability. After trivial 
calculations one finds the desired result with 

a 2 = (~) (3.9) 

where (~) is the man value of the spacing between two neighboring scat- 
terers. 

822/37/1-2-3  
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4. PROOFS 

Proof of Theorem 1. In the symmetric case the Markov chain 
(v., e n, r . )  has the following stationary distribution: 

p(ds Iv, co) ~(v, co) v(dco), . (v ,  co) = i /2  (4.1) 

The stationary Markov chain is also ergodic because---due to the ergodicity 
of the environment--1 is a nondegenerate eigenvalue of P0. One can easily 
check this in the Hilbert space Lz({-1,  1 } X O, ~rdv). (See Appendix.) Conse- 
quently the strong law of large numbers is true for any function of the 
Markov chain integrable with respect to p~r dr. In particular 

t , . ~ . , (~ )=1  
m(t) T 

f v(dco)j~oo sp(ds Iv, co) (4.2) 

Now we turn to the invariance principle: 

r(at)  Z';~dl '~ vk 
(4.3) 

Due to (4.2) and Theorem 17.1 of Ref. 2, on sums with a random number of 
summands it is sufficient re prove the invariance principle for ( Z ~ ]  vk)/'/X 
(that is, for the case without random waiting times). 

A second remark is that it suffices to prove this for the case when 
2 < 1/2 a.s. If we have the weaker condition (2.7) we form blocks of N 
consecutive scatterers and identify each block with one site of a "super 
lattice" and observe the random walk on this. The essential observation is 
that this random walk will also be a symmetric persistent one with waiting 
times where 

[ (1)1-1 ~., = ~_~ ~ -  1 + 1 (4.4) 
j~blocki 

and 

(r) = N (4.5) 

By (4.4) we can choose such an N that ~ < 1/2 a.s. 
If ;t < 1/2 we prove the theorem by choosing a convenient realization of 

the random walk. Given the environment co, fix the following point system 
on the real line: 
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1 - 24(0)) 
Ao - , l(co) 

A i = B i _  a -[- 1, 

, B o  = - - A  o 

1 -- 2)I,(Tico) 
B~=A~ + ~(ri~o ) (i>>. 1) 

3 5  

1 -- 22(Ti~o) 
B i z A i +  1 - -  1, A , = B ~  2(Tr ) (i~<--1) (4.6) 

Consider a Wiener process starting from the origin and couple with its 
motion a random walk on the lattice Z in the following way: the random 
walker jumps to the site i when the Brownian particle enters the closed 
interval [Ai,Bi]. This r.w. will be a persistent one with waiting times with 
the same realization of the environment. Let us denote by T N the sum of the 
first N waiting times and by W(t) the trajectory of the Brownian particle. We 
have 

~,[At] Uk z~[t] Ok WT[At] 
m (4.7) 

But WrtA, ~ is equal to Az~A,jvk or B~,~ok and ] y~At] Vk ] ~ OO in probability. So 
for the first factor we have the weak law of large numbers: 

[j  1-1 ~lAtl Vk P , v(dw) (w) (4.8) 
WT[At] 

we also have 

T[At] a . s .  > ( v(d~~ l - 2 2 (4.9) 
At  

consequently by Theorem 4.A of Ref. 3 we have the desired result. II 

Proof of Theorem 2. For the sake of completeness we mention that, 
in the P.D. case, the Markov chain has also an absolutely continuous 
stationary distribution of the form (4.1) with 7r given in (2.15), (2.16), but we 
do not use this fact in the proof. 

We have to introduce the following auxiliary random variables: 

Z(t)  = max Y(s) (4.10) 
s~t 
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ri  = min{t I Y ( t ) = i } ,  i ) O  (4.11) 

Oi = Ti -- Ti-  1, i >/1 (4.12) 

K i = m a x { / -  Y(s) I T i <~ s < Ti+l} (4.13) 

61( 0 = t - -  Tzm (4.14) 

62(t ) = Y(t) -- Z(t)  (4.15) 

The physical meaning of these variables is transparent. 
By stationarity of the environment {0i}t>~l and {Ki}i>~ are stationary 

sequences of random variables. Due to the fact that the waiting times have 
finite second moments, 0~ have too. Due to (2.2) K~ have moments of all 
orders. The following inequalities are evident: 

IcSl(t)l ~ Oz(t), 1~2(t)l ~ Kz(t) (4.16) 

The crucial observation is that the random variables {0,.} are exponentially a- 
mixing. Let ~ and ~-~ (k ~> 1) be the a-algebras generated by {0i}~=~ and 
{0i},.~_k, respectively, and Mg,m the event that the random walker comes back 
from site k + r n  to site k + d , d  being the range of dependence of the 
environment (m > d). I fA E ~ ,  B C ~  -k+m, simple calcultions show that 

I g ( B  I A) - 3(B)I = ]~(B I A ~ M k , m )  - -  ~ ( B  [ Mk,m) I ,~@(Mk,m) 

~< 2 9 ( / k , m )  (4.17) 

The right-hand side of (4.17) is explicitly calculable, and due to (2.2) one 
finds that it is exponentially small. Consequently 

z ( t )  a.~. 1 
= u (4.18) ) 

t EO 

Turning to the invariance principle we have 

Y ( A t )  - uAt  Z~(=~ ') ( 1 /u  - Oi) 62(At )  - -  u6~(At)  
- "  v q  (4.19) 

Due to (4.16) the last term is dominated by 

kz(At) + UOz(At) (4.20) 
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This expression tends in probability to zero uniformly in t C (0, 1] because 

~ (  sup 0 \ > r / v / A )  
\ k < Z ( A )  

= ~  sup 0~>r/v/A - ~ < u + e  ~ <u+e  
\ k < Z ( A )  

for any t/. The same argument applies to kz(at ). Applying Theorem 20.1 of 
Ref. 2 to the first term in (4.19) and then once again Theorem 17.1 of the 
same reference we obtain the desired result. 
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A P P E N D I X  

We shall prove that, in the symmetric case, 1 is a nondegenerate eigen- 
value of P0 considered as an operator on L2({+ l , -1}  • rrdv). For this 
purpose we write 

Po =AU (A.1) 

with 
[Af](v, co) = 2(w) f(v,  co) + [1 - 2(co)]f(-v, co) 

[Uf] (v, co) = f(v, TVco) (A.2) 

U is unitary and, by using the fact that ~, is not concentrated to 0 and l ,  

IIAfll < IIflF (A.3) 

for any nonconstant f.  Consequently 

HPoft] < ][fll (A.4) 
for any nonconstant fi 
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